

Prospective of IPv6 as a Future Internet Engine

Xing Li 2012-09-13

Outline

- Challenges and requirements
- Design compromise
- Lessons learned
- Rethink of the design principles
- Future

Challenges and requirements

Places, people, things

First we Connected Places, Then People, Then Things

RIR IPv4 address run-down

APNIC

ARIN

RIR IPv4 Address Run-Down Model

IPv4 routing table explosion

Challenged Business Model

Security incident explosion

Cyber security incidents reported to CERT

Source: Carnegie Mellon University, 2004

New backbone

Large Objects in Consolidated DC

Small Objects In Metro Core

Edge

Small Object CDN

Metro Core

and the second

Design compromise

Internet architecture

- Need to interconnect many existing networks
- Hide underlying technology from applications
- Decisions:
 - Network provides minimal functionality
 - "Narrow waist"

Tradeoff: No assumptions, no guarantees.

IPv4 & IPv6 Header Comparison

IPv4 Header

Version	IHL	Type of Service	Total Length		
Identification			Flags	Fragment Offset	
Time to Live		Protocol	Header Checksum		
Source Address					
Destination Address					
		Options		Padding	

IPv6 Header Traffic Class Version Flow Label Next Hop Limit **Payload Length** Header Source Address **Destination Address**

- field's name kept from IPv4 to IPv6
- fields not kept in IPv6
- Name & position changed in IPv6
- New field in IPv6

Controversy on addressing

- The length of addresses
 64 bits vs. variable length
- Providers and monopolies
 - keep the network simple
- Flows and services
 - network map
- Variable format and renumbering – provider/subscriber

Controversy on protocol

• Do we need more than 255 hops?

Large network vs routing loop

- Is the destination address in the right place?
 - 128bit processor
- Should packets be larger than 64K?
 Jumbogram option
- Can we live without a checksum?
 Link layer checksum and risk analysis

Controversy on security

- Should we mandate security?
 export restriction/clipper chip
- Did we choose the correct algorithm?
 - MD5/DES-CBC not secure enough, too slow, or both
- Is this the right layer?
 - New network code
- Do we need additional protection?
 DOS, traffic pattern

Controversy on flows

- Will flow labels be used?
 - There are more flows than sources
- To reserve or not?
 - Capacity/Adaptive applications
- What about ATM?

- As simple as possible, in order to scale

Controversy on transitioning

- Dual-stack strategy
 - The IPv6 code, ICMP, neighbor discovery code
 - The handling of IPv6 within TCP and UDP
 - Modifications to the sockets libs
 - The interface with the name service
- Encapsulating IPv6 in IPv4
 - Tunneling
- Translation
 - IPv4 and IPv6 are not compatible

AS count

Lessons learned

CERNET (IPv4)

- CERNET is the first (1994) nation wide Internet backbone in China.
- CERNET ranks 23 in global CIDR report.
- Over 2,000 universities on CERNET with about 20M subscribers.

CNGI-CERNET2 design concepts

- Protocol selection
 - IPv6-only
- Complicity
 - Multiple AS's
 - Multiple vendors
- Transition strategy
 - High performance
 - Free
- IETF related works
 - IPv4 over IPv6 (Softwire WG)
 - IPv4/IPv6 translation (Behave WG, softwire WG)
 - Source address validation improvement (SAVI WG)

CERNET2 (IPv6)

- Built in 2004, with national coverage
- CERNET2 is the largest IPv6 backbone in China.
- About 200 universities connected to CERNET2 with about 2M subscribers.

IPv6 applications

- Video
 - Beijing 2008Olympic website
 - Medical applications
 - Musical performance

The killer application

- Video?
- P2P?
- Internet of Things?

The intercommunication with the IPv4 Internet is the killer application of IPv6.

IVI

CERNET/CNGI-CERNET2

IPv4

IPv6

Traffic comparisons

CERNET IPv6' traffic is about 20% of IPv4

CERNET IPv6 transition experience

Transition evolution

Remarks

- Single and double translation can be mixed
- Double translation and encapsulation can be unified
- If stateless works, the stateful should work

Principles of IPv4/IPv6 transition

- Native IPv6 (both ends are in IPv6)
- Single translation (the other side is in IPv4)
- Double translation (native IPv4 app and ALG)

Less prefei

Encapsulation (IPv4 header transparency)

Right direction

Rethink of the design principles

General Design Issues

- Heterogeneity is inevitable and must be supported by design.
- If there are several ways of doing the same thing, choose one.
- All designs must scale readily to very many nodes per site and to many millions of sites.
- Performance and cost must be considered as well as functionality.
- Keep it simple. When in doubt during design, choose the simplest solution.
- Modularity is good. If you can keep things separate, do so.
- In many cases it is better to adopt an almost complete solution now, rather than to wait until a perfect solution can be found.
- Avoid options and parameters whenever possible.
- Be strict when sending and tolerant when receiving.
- Be parsimonious with unsolicited packets, especially multicasts and broadcasts.
- Circular dependencies must be avoided.
- Objects should be self decribing (include type and size), within reasonable limits.
- All specifications should use the same terminology and notation, and the same bit- and byte-order convention.
- And perhaps most important: Nothing gets standardised until there are multiple instances of running code.

RFC1958

The principles of design (1)

- Principles such as simplicity and modularity are the stuff of software engineering
- Decentralisation and tolerance are the life and breath of Internet

Tim Berners-Lee

The principles of design (2)

- Avoid needless complexity
- Support existing content
- Be conservative in what you send; be liberal in what you accept
- Solve real problems
- Pave the cowpaths
- Degrade gracefully
- The value of a network is proportional to the square of the number of connected users of the system (n2)
- Design for humans first, machines second
- Rough consensus and running code

What IPv6 can do for FI?

- Principles
 - End-to-end \rightarrow hop-to-hop
 - Stateless \rightarrow stateful
- Resources
 - 128 bits addresses
 - Traffic class
 - Flow label
- Reality
 - Knowledge
 - Equipment
 - Networks

Future

Future Internet

- Should the current Internet principle be kept?
 - Connectionless
 - End-to-end
 - Best effort
- What is the transition scheme?
 - Multiple stack
 - Encapsulation
 - Translation

Remarks

THE INTERNET WISHING TREE BY THE INTERNET SOCIETY
Add your wish
Use the keyboard left / right arrows to navigate
I wish there is ONE Internet in our globe , not two Internets (IPv4 and IPv6).
Xing